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A B S T R A C T

In underground communication systems, continuous mud pulse signals are susceptible to pump noise during
transmission, resulting in a high bit error rate (BER). In this paper, a Paradigm Inner Product Orthogonal
Matching Pursuit (PIPOMP) algorithm is proposed for the transmission characteristics of continuous waves
in the underground. First, the observation vectors of pump noise are obtained by signal cyclic prefix (CP)
differencing, and the resulting observation vectors are more accurate than the traditional methods. Second,
the columns of the sensing matrix that are most relevant to the observation vectors are selected as candidate
support sets by computing the L2 paradigm. Then, the least squares method was used to solve for the estimated
value of the pump noise at the previous moment. Finally, the pump noise is reconstructed by combining the
correspondence between the time and frequency domains. This paper establishes a complete underground
communication system. We simulate the denoising performance of pump noise under stable and unstable
conditions and analyze the denoising performance of the PIPOMP algorithm in depth. Simulation results show
that the algorithm significantly improves the interference immunity performance and reduces the system BER
in the environment where pump noise interferes and the fading is more drastic.
1. Introduction

Underground ultra-reliable and low-latency communications play a
great role in oil exploration and development [1]. However, under-
ground communication in the transmission process will be affected by
some physical factors contain a lot of noise, the most significant of
which is the pump noise [2]. With the increasingly harsh environment
of oil exploration, the difficulty of exploration is increasing [3]. High-
quality real-time downhole data is essential for operators [4]. In order
to ensure the efficient work of oil exploration, the study of downhole
wireless communication is very important [5]

Signal detection and noise removal techniques are key to the re-
search of underground communication technology [5]. In 2017, Qu
F et al. in the literature [6] utilized an adaptive noise cancellation
method for dual pressure sensors to eliminate signal noise, and after
field experiments it was obtained that the main components of the
noise in the frequency domain were reduced by 49%–92%, which is
seen to be unsatisfactory for noise removal; In 2019, S. M. Mwachaka
et al. proposed adaptive time-domain noise suppression method for
denoising in the literature [7], but it tends to cause attenuation of
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the communication signal energy, leading to severe signal distortion;
In 2019, Zya B et al. used dual-sensor time-domain delay difference
method for denoising in the literature [8], but it was significantly
affected by the variation of noise characteristics, which resulted in
less thorough noise removal; In 2020, Liang Y et al. proposed the
use of wavelet transform to process the noise of high rate mud pulse
signal in literature [9], but it is necessary to compare the correlation
coefficients and reconstruction coefficients of the signals before and
after denoising, and it is difficult to determine the optimal parameter
combinations for the denoising process of mud pulse signal, and the
denoising effect is poor; In 2021, ShiLong Cheng et al. in literature [10]
designed low-pass filter to remove noise signals above 0.5 Hz, which
can remove most of the noise, but the denoising effect is too poor;
In 2022, Bo Yang et al. proposed a mud signal denoising network
based on convolutional neural network in the literature [11], and
the denoising effect was improved, but it was difficult to build the
network and the operation was more difficult; In 2023, Simin Jiang
proposed an improved constant center frequency modal decomposition
algorithm based on the narrowband signal characteristics of pump
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Physical Communication 68 (2025) 102579 
noise harmonics in literature [12], which has better performance in
enoising, but the complexity is too high.

Compressed sensing technology is constantly evolving and plays
n important role in different fields and shows better performance. In
rder to overcome the interference problem of pump noise, this paper
ses the compressed sensing method to remove the pump noise. In

this paper, we focus on analyzing the underground continuous wave
transmission characteristics, building an underground complex channel
model, and designing a scheme to eliminate the pump noise by using
the compressed sensing reconstruction technique.

The main contributions are summarized as follows:
(1) In this paper, we propose a new method to compute the noise

observation vector. First, adding the CP in front of the data. Then the
CP of the current set of data received is made differential to the CP of
the previous set of data. Finally the observation vector of the noise is
obtained by period expansion.

(2) In this paper, a PIPOMP algorithm is proposed. We use the
calculation of the inner product of L2 paradigm to select atoms, and the
selected atoms are more relevant. Then, the estimate of the pump noise
at the previous moment is solved by the least squares method. Finally,
the pump noise is accurately reconstructed by the correspondence
between the time and frequency domains, combined with the phase
transform.

(3) This paper designs a complete underground communication
ystem. We analyze the pump noise characteristics and simulate the
omplex channel environment using a time-varying channel model. The
enoising performance is analyzed from two aspects.

2. System modeling

Single-carrier phase-modulated signals have high immunity to inter-
ference. When the phase is inherited, the noise immunity of the signal

ill be further improved [13]. Assume that the message signal 𝑚(𝑡) is
omposed of binary bits. Then the transmitted signal 𝑠𝑐 .𝑝.(𝑡) with phase
nheritance can be expressed as:
𝑠𝑐 .𝑝.(𝑡) = 𝐴0 sin

(

𝜔0𝑡 + 𝜃 − 𝑚(𝑡)
)

= 𝐴0 sin
(

𝜔0𝑡 + 𝜃 −
∑𝑛
𝑛=1

4𝑎𝑛+2𝑏𝑛+𝑐𝑛
4 𝛱𝑛,𝑡

) (1)

Where 𝐴0 denotes the signal amplitude, 𝜔0 denotes the carrier fre-
uency, 𝜃 denotes the initial phase, and 𝑎𝑛𝑏𝑛𝑐𝑛 denotes the 𝑛th three-bit
inary information bit.
𝛱𝑛,𝑡 =

𝜋
2 + 1

𝑇0
∫ ∞
−∞

sin
(

𝜔𝑇0
2

)

𝜔2
sin

(

𝜔
(

𝑡 − 4𝑛𝑇0 + 7𝑇0
2

))

𝑑 𝜔
(2)

Where 𝑇0 denotes the duration of the pulse. 𝑠𝑐 .𝑝.(𝑡) is transmitted
through a fluid medium with severe amplitude attenuation to obtain
a received signal 𝑟(𝑡), denoted as

𝑟(𝑡) = ∫ ∞
−∞ 𝑠𝑐 .𝑝. (𝜏)ℎ(𝑡 − 𝜏)𝑑 𝜏 + 𝑛(𝑡) + 𝑝(𝑡) (3)

Where 𝑛(𝑡) denotes additive Gaussian white noise and 𝑝(𝑡) denotes
pump noise, see Section 3.1. ℎ(𝑡) denotes the channel impulse response.
Unlike terrestrial environments, there is more severe multipath fading
f signals when transmitting signals using fluidic media [14]. Typically,

the phase attenuation model of the received multipath signal is mod-
eled using a uniform distribution obeying (0, 2𝜋). Therefore, ℎ(𝑡) can be
modeled as

ℎ (𝑡) =
𝐿−1
∑

𝑘=0
𝑎𝑘𝛿

(

𝑡 − 𝜏𝑘
)

𝑒𝑗 𝜃𝑘 (4)

Where 𝐿 denotes the number of channel paths, 𝑎𝑘 denotes the am-
litude of the 𝑘th path, 𝜏𝑘 denotes the delay of the 𝑘th path, and 𝜃𝑘
enotes the phase of the 𝑘th path.

We can use the Nakagami distribution to approximate the multipath
mplitude statistical model that simulates small-scale fading in the
2 
downhole environment. That is, the parameter 𝑎𝑘 of Eq. (4) can be
approximated by the Nakagami distribution with variable parameters.
We model the delay characteristics of each path through a Poisson
distribution. When discussing statistical modeling of multipath arrival
times, the relative delay, expressed as

{

𝜏𝑘 − 𝜏0
}𝐿−1
0 , is generally used.

The received multipath signal phase statistics can be modeled as a
uniform distribution obeying (0, 2𝜋).

According to Eqs. (1) and (2), we find that the carrier period in
the code element inherits the phase of the over-period and is contin-
uous and cumulative. Therefore, at the receiver side, we use phase
demodulation. Fig. 1 shows the specific flow of phase demodulation.
The codeword judgment is performed by phase difference. Note that
we default the initial phase to 0. The phase judgment rule is expressed
as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ 𝛥𝜑 < 𝜋∕8, ′000′

𝜋∕8 ≤ 𝛥𝜑 < 3𝜋∕8, ′001′

⋮ ⋮
11𝜋∕8 ≤ 𝛥𝜑 < 13𝜋∕8,′ 110′

13𝜋∕8 ≤ 𝛥𝜑 < 2𝜋 , ′111′

(5)

Using Eq. (5), we can determine the unit bit information carried by the
code element and thus obtain all the bit data.

3. Noise detection & removal

Mud pulse signals are affected by a variety of noises during trans-
mission, which mainly include Gaussian noise and pump noise. Gaus-
sian noise can be filtered using equalization algorithms [15], pump
oise is difficult to remove using traditional algorithms. Therefore, this
aper focuses on algorithms to remove pump noise.

3.1. Pump noise characteristics

The pump noise 𝑝 (𝑡) consists mainly of the fundamental wave and
its higher harmonic signal components that are equal in frequency to
the pump impulse signal. The pump noise can be expanded into the
orm of the sum of the fundamental and a number of harmonics by

means of the Fourier transform [16], so that the pump noise can be
odeled as

𝑝 (𝑡) =
∞
∑

𝑘=1
𝐴𝑘 sin(2𝜋 𝑓𝑘𝑡 + 𝜃0) (6)

Where, 𝐴𝑘 denotes the amplitude of the 𝑘th harmonic, 𝜃0 denotes the
nitial phase, and 𝑓𝑘 denotes the frequency of the 𝑘th harmonic. Its

frequency can usually be calculated as

𝑓𝑘 =
𝑘 × 𝐹
60

(7)

Where 𝐹 denotes the stroke rate and 𝑘 denotes the number of times.
The triplex pump produces interference at a fundamental frequency

f about 3.4 Hz, a second harmonic frequency of about 6.7 Hz, and
a third harmonic frequency of about 10.2 Hz [16]. Pump noise inter-
ference consists mainly of the fundamental frequency and its second
nd third harmonics. The pump noise exhibits sparse characteristics in

the frequency domain. Fig. 2 shows the time and frequency domain
aveforms of the pump noise.

3.2. The denoising algorithm proposed in this paper

According to the analysis of the pump noise characteristics in the
revious section, we can find that the pump noise shows sparse char-
cteristics in the frequency domain. Therefore, noise removal can be

performed by the algorithm of compressed sensing. For channel en-
vironments with more severe fading, the denoising performance of
traditional compressed sensing algorithms is not satisfactory. In order

to improve the accuracy of the received data and to reduce the BER
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Fig. 1. Specific flow of phase demodulation. Where and denote the values of the inner product of the stabilized codeword period with the cochannel cosine and cochannel sine,
respectively.
Fig. 2. Time and frequency domain waveforms of stabilized pump noise.
of the system, an improved compressive sensing denoising algorithm is
proposed in this paper.

For a digital sampling system, we set the sampling frequency to 𝑓𝑠
and the sampled discrete signal is denoted as 𝑟 (𝑛). We can use 𝒓 to
denote the sampled signal vector. Because the communication system
has a synchronization process, the carrier frequency of the signal can
be known at the receiving end.

We unfold the received 𝑁 ∗ 1 time-discrete signal 𝒓 under the
orthogonal basis vector

{

𝜓𝑖
}𝑁
𝑖=1 for processing. The sparse matrix 𝝍 =

[𝜓1, 𝜓2,…𝜓𝑁 ] ∈ 𝑅𝑁×𝑁 is constructed by viewing
{

𝜓𝑖
}𝑁
𝑖=1 as a column

vector, then the signal 𝒓 can be expressed as

𝒓 =
𝑁
∑

𝜃 𝜓 𝑜𝑟 𝒓 = 𝝍 𝜽 (8)

𝑖=1

𝑖 𝑖

3 
Where the constant coefficients are 𝜃𝑖 = ⟨𝒓, 𝜓𝑖⟩ = 𝜓𝑇𝑖 𝒓. 𝝍 is called
the sparse matrix. In this paper the sparse matrix is obtained using
discrete cosine transform. 𝜽 =

[

𝜃1, 𝜃2,… , 𝜃𝑁
]𝑇 ∈ 𝑅𝑁×1 is called sparse

coefficient vector and is obtained by Fourier transform.
We project the signal 𝒓 with a measurement matrix𝜱 ∈ 𝑅𝑀×𝑁 (𝑀 ≪

𝑁) that is uncorrelated with the sparse matrix. Denoted as

𝒚𝒑 = 𝜱 𝒓 = 𝜱 𝝍 𝜽 = 𝐴𝜽 (9)

Where 𝒚𝒑 is called the observation vector of noise, 𝐴 = 𝜱 𝝍 is called
the sensing matrix.

The observation vector 𝒚𝒑 of the noise, which we can obtain by
time-differential measurement operations. Specifically, a CP is added to
the end of the transmitted bit data. Then the CP data at the correspond-
ing position in the received signal 𝒓 is found. The observation vector of
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noise is finally obtained by making a difference between the CP of the
current set of data and the CP of the previous set of data. Finally the
observation vector of the noise is obtained. The length of the CP in this
paper is the length of three bits of binary bit data. Because the pump
noise is cyclic, we can get the pump noise data with the same length of
the signal by cycle expansion. Note that, 𝒚𝒑 are both period-expanded
noisy observation vectors.

It can be seen from the above analysis. The pump noise can be
recovered by using the obtained observation vector 𝒚𝒑, sensing matrix
𝐴 and sparsity 𝐾 as inputs to the compressed sensing reconstruction
algorithm. Therefore, based on the theory of compressed sensing, this
paper proposes a PIPOMP algorithm. We choose atoms by computing a
form of L2 paradigm. Finding the 𝑡 columns in the sensing matrix 𝐴 that
are most relevant in the observation vector 𝒚𝒑. Finally, these columns
are used as candidate support sets.

We can obtain an 𝑁 ∗ 1 matrix 𝐵 by multiplying the unit array 𝑃 by
each column of 𝐴. We can find the L2 paradigm of matrix 𝐵 as follows:

‖𝐵‖2 =
√

𝐵(1, 1) + 𝐵(2, 1) +⋯ + 𝐵(𝑁 , 1) (10)

Where, 𝐵(𝑁 , 1) denotes the 𝑁th row, first column of matrix 𝐵.
Then the normalization calculation is performed. Finally, the resid-

ual 𝑟0 is multiplied with the normalized result and the absolute value
is taken to obtain the atomic candidate support set. The detailed steps
of the PIPOMP algorithm are given by Algorithm. 1.

Algorithm 1: PIPOMP reconstruction algorithm.
Input: 𝒚𝒑 : observation vector of pump noise, 𝐴 : sensing

matrix, 𝐾 : sparsity.
Output: 𝛥 ̂𝑒𝑝 : reconstructed noise, 𝑟𝑡 : residual.

1 Initialization:Number of iterations 𝑡 = 1 , initial residuals
𝑟0 = 𝒚𝒑 , initial index set 𝛬0 = 𝜙 , initial atomic support set
𝐴0 = 𝜙.

2 Calculate the correlation of each column of the matrix 𝐴 with
the vector 𝑟0. Multiply the unit array 𝑃 by each column of 𝐴.
Calculate the L2 paradigm number of the correlated columns
and normalize 𝑃 𝐴2−𝑛𝑜𝑟𝑚 ← (𝑃 ∗ 𝐴𝑗 ).∕

‖

‖

‖

𝑃 ∗ 𝐴𝑗
‖

‖

‖2
, multiply the

residuals 𝑟0 by the normalized result and take the absolute
value 𝑏𝑒𝑡𝑎𝑗 ← |

|

𝑟0𝑇 ∗ 𝑃 𝐴2−𝑛𝑜𝑟𝑚
|

|

.
3 Sort the results of 𝑏𝑒𝑡𝑎 in step 2 to find the largest 𝑡 columns

and form the set 𝐽𝑡 (the set of column order numbers) from
these column vectors;

4 Perform atom set and index set updates: 𝛬𝑡 = 𝛬𝑡−1 ∪ 𝐽𝑡 ,
𝐴𝑡 = 𝐴𝑡−1 ∪ 𝑎𝐽𝑡 .

5 Solve for 𝛥 ̂𝑒𝑝𝑡 by least squares:
𝛥 ̂𝑒𝑝𝑡 = ar g min ‖‖

‖

𝑦𝑝 − 𝐴𝑡𝛥𝑒𝑝𝑡
‖

‖

‖

= (𝐴𝑇𝑡 𝐴𝑡)−1𝐴𝑇𝑡 𝒚𝒑.
6 Update the current residuals:

𝑟𝑡 = 𝒚𝒑 − 𝐴𝑡𝛥 ̂𝑒𝑝𝑡 = 𝒚𝒑 − 𝐴𝑡(𝐴𝑇𝑡 𝐴𝑡)−1𝐴𝑇𝑡 𝒚𝒑.
7 Let the number of times 𝑡 = 𝑡 + 1 , return to step 2 for the next

iteration.
8 Judge the stop condition, if 𝑛𝑜𝑟𝑚(𝑟𝑡) < 1𝑒 − 6 or 𝑡 > 𝐾 , then

jump out of the loop.
9 The final estimate of the noise 𝛥 ̂𝑒𝑝 is the last calculated 𝛥 ̂𝑒𝑝𝑡 ,

𝛥 ̂𝑒𝑝 = 𝛥 ̂𝑒𝑝𝑡.

We combine the correspondence between the time and frequency
domains and write the output 𝛥 ̂𝑒𝑝 of Algorithm. 1 as:

𝛥 ̂𝑒𝑝 = 𝑒𝑝 − 𝑒𝑝𝑋 = (1 − exp(𝑗2𝜋 𝛼)) 𝑒𝑝 (11)

Where 𝑒𝑝 denotes the pump noise data of the previous moment. 𝑒𝑝𝑋
denotes the pump noise data of the current moment. 𝛼 denotes the
phase difference, which can be obtained from the phase change after
modulation.
4 
Fig. 3. Reconstruction rate with different observation vectors.

Finally, we can successfully solve for the pump noise 𝑒𝑝𝑋 according
to Eq. (11). we subtract the pump noise 𝑒𝑝𝑋 from 𝒓 of the received signal
vector to obtain the complete signal. Then the bit signal is recovered
by phase demodulation.

4. Numerical analysis

In this section, we numerically analyze the proposed denoising
algorithm. To verify the reconstruction performance of the algorithms
in this paper, this experiment compares the Orthogonal Matching
Pursuit (OMP) algorithm [17], Compressive Sampling Matching Pursuit
(CoSaMP) algorithm [18], Subspace Pursuit (SP) algorithm [19], Gener-
alized Backtracking Regularized Adaptive Matching Pursuit
(GBRAMP) algorithm [20], Sparse Adaptive Orthogonal Subspace Pur-
suit (SAOSP) algorithm [21], Mud Signal Denoising Net (MSDnNet) [11]
and Constant center frequency Variational Mode Decomposition
(CVMD) [12].

4.1. Reconfiguration success rate

We measure whether the reconstruction is accurate or not by the
mean square error (MSE). We consider the reconstruction successful
when the accuracy of the reconstruction is less than 10−6. Where the
mean square error can be expressed by the following equation.

MSE = 1
𝑛

𝑛
∑

𝑖=1

(

𝑥𝑖 − 𝑥̂𝑖
)2 (12)

where 𝑥𝑖 is the true value, 𝑥̂𝑖 is the reconstructed value, and 𝑛 is the
total number of data points.

The length of the one-dimensional random signal selected for this
experiment is 1256, and the number of trials is 100, and we stipulate
that the reconstruction is successful if the reconstruction error is less
than 10−6. Fig. 3 shows the measurement results when the sparsity
𝐾 = 15 and the observation vector is [75, 100]. Fig. 4 shows the
measurement results when the observation vector is 70 and the sparsity
is [6, 30]. Fig. 3 shows that the proposed algorithm in this paper is
better with higher reconstruction rate for different observation vectors.
Fig. 4 shows that at different sparsities, the algorithm proposed in this
paper has a higher reconstruction rate when the sparsity is small, and
the reconstruction performance is slightly lower than that of the OMP
algorithm only near the sparsity 𝐾 = 20. Considering the nature of
the pump noise in this paper, the sparsity tends to be small, so it does
not affect the reconstruction performance.When the observation vector
is small or sparsity is large, the system is unsolvable and cannot be
reconstructed out of the pump noise.
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Fig. 4. Reconstruction rate at different sparsities.

4.2. Correlation coefficient after denoising

In this paper the carrier frequency is 16 Hz, the carrier period is
1/16, and the sampling frequency is 32 Hz. The number of binary
bits sent by the transmitter is 120 Bit.The total number of paths in
the original downhole channel is set to 256, of which there are 10
major paths. The parameter g of the Nakagami distribution was set to
2. Doppler shift is zero [22]. The observation vector is selected to be
30% of the signal length. The sparsity of the pump noise 𝐾 = 3. Each
set of experiments is averaged over 500 runs.

The expression for the denoising correlation coefficient (𝜌) is given
by

𝜌 =
∑𝑁
𝑖=1 𝑥̂(𝑖)𝑥(𝑖)

√

∑𝑁
𝑖=1 𝑥̂2(𝑖)

∑𝑁
𝑖=1 𝑥2(𝑖)

(13)

Where 𝜌 denotes the similarity between the reconstructed signal and
the original signal, and its value ranges from [−1, 1]. The closer 𝜌 is to
1, the greater the similarity.

The stabilizing pump noise is characterized as presented in Sec-
tion 3.1. In order to better validate the performance of the denoising
algorithm, we verified both the correlation coefficient and the system
BER after denoising. When the Signal to Noise Ratio(SNR) is −10 dB,
the correlation coefficient after denoising of the PIPOMP algorithm
proposed in this paper is 0.8944. Eq. (5) shows that the correlation
coefficient of the PIPOMP algorithm is the largest compared to the
other algorithms, with the strongest correlation and the best noise
removal.

The time and frequency domain characteristics of unstable pump
noise are complex and usually manifest themselves in fundamental
frequency drift and amplitude fluctuations [22]. The following three
aspects are discussed below.

(1) Only fundamental frequency drift.
Under normal operating conditions, piston pumps may fluctuate

their frequency slightly during operation, which may result in a shift in
the fundamental frequency of the pump noise. Assuming a constant am-
plitude, the fundamental frequency fluctuates sinusoidally over a range
of ±5%, ±10%, and ±15%. As in Fig. 6, the specific representation
algorithm for each line remains consistent with Fig. 5. The correlation
coefficient after denoising of the PIPOMP algorithm proposed in this pa-
per is 0.8681 when the SNR is −10 dB and the fundamental frequency
fluctuates by ±15%. In Fig. 6, the correlation coefficient after denoising
of the PIPOMP algorithm proposed in this paper is significantly higher
than that of other algorithms, so the correlation is stronger and the
denoising effect is better.

(2) Only fundamental amplitude fluctuation.
5 
Fig. 5. Comparison of correlation coefficients after denoising when pump noise is
stabilized.

Fig. 6. Comparison of correlation coefficients after denoising at fundamental frequency
drift of pump noise.

The fundamental frequency of the pump noise is assumed to remain
stable so that its amplitude fluctuates randomly within ±5%, ±10%
and ±15%. As in Fig. 7, the specific representation algorithm for each
line remains consistent with Fig. 5. The correlation coefficient after
denoising of the PIPOMP algorithm proposed in this paper is 0.8452
when the SNR is −10 dB and the amplitude fluctuates by ±15%.
In Fig. 7, the correlation coefficient after denoising of the PIPOMP
algorithm proposed in this paper is significantly higher than that of
other algorithms, and the advantage is more obvious at low SNR.

(3) Simultaneous variation of fundamental frequency and ampli-
tude.

When the fundamental frequency and amplitude of the pump noise
change at the same time, we assume that the fundamental frequency
and amplitude of the pump noise fluctuate within ±10% at the same
time. In such a complex situation, the PIPOMP algorithm proposed
in this paper still performs well. As shown in Fig. 8, the correlation
coefficient after denoising can be improved to 0.8430 when the SNR
intensity is as high as −10 dB. By comparing the different curves, we
can more clearly observe the advantages of the denoising performance
of the PIPOMP algorithm.

In underground communication, pump noise has a great impact on
existing algorithms, leading to their poor denoising results. Therefore, it
is difficult for existing algorithms to overcome the effect of pump noise.
The algorithm proposed in this paper starts from the characteristics
of pump noise and obtains the observation vector of pump noise
by means of cyclic prefix. The observation vector obtained by this
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Fig. 7. Comparison of correlation coefficients after denoising for fluctuating pump
noise amplitude.

Fig. 8. Comparison of correlation coefficients after denoising for simultaneous changes
in fundamental frequency and amplitude of pump noise.

method has stronger correlation and better removal effect on pump
noise. The underground communication system in this paper adopts the
coding method and equalization algorithm with better noise resistance.
Therefore, the proposed algorithm is almost unaffected by SNR.

4.3. System BER

The theoretical BER formula for continuous wave 8PSK modulation
is [23]

𝑃𝑒 = 𝑒𝑟𝑓 𝑐(
√

𝑆 𝑁 𝑅 sin 𝜋
8
) (14)

Since pump noise exists at multiple frequencies, this affects the
result of phase judgment. Eventually, this will lead to the occurrence
of erroneous codes, which in turn will affect the BER performance of
the system. To increase the persuasiveness of the proposed algorithm,
in this section we add BER experiments. We simulated the stabilized
pump noise and the pump noise fundamental frequency and amplitude
when they fluctuated simultaneously at ±10%. The expression for the
system BER is
𝑃 𝑒 = 𝑁 𝑒∕𝑁 (15)

Where 𝑁 is the total number of binary codewords transmitted and 𝑁 𝑒
is the number of codewords that were transmitted in error.

Fig. 9 shows the system BER curve for stabilized pump noise. Fig. 10
shows the system BER curve for pump noise with both fundamental
frequency and amplitude fluctuating at ±10%. Based on the BER curves
6 
Fig. 9. Comparison of BER with stabilized pump noise.

Fig. 10. Comparison of BER for simultaneous fluctuation of pump noise fundamental
frequency and amplitude at ±10%.

in Fig. 9 and Fig. 10, it can be seen that the proposed algorithm in this
paper has a slight performance advantage over the conventional recon-
struction algorithm when the SNR is negative. However, when SNR is
positive, the algorithm proposed in this paper performs significantly
better and the system BER is lower.The algorithm proposed in this
paper is suitable for SNRs of −5 dB and above, with little performance
advantage at smaller SNRs. The proposed algorithm only simulates
the real environment of underground oil exploration. Specifically, our
solutions are suitable for gas phase, liquid phase, gas–liquid two-phase,
and liquid–solid two-phase environments.

For complexity,we compare the complexity of different algorithms
by analyzing the number of multiplication operations. We have com-
pared the proposed algorithm with OMP algorithm, CoSaMP algorithm,
SP algorithm, GBRAMP algorithm and SAOSP algorithm. As shown
in Table 1. M is the dimension of the observation vector. N is the
dimension of the sent data. K is the sparsity of the signal. We bring the
parameters into Eq. The complexity of the PIPOMP algorithm proposed
in this paper is 3 × 106, and the complexity of the OMP algorithm is
1.4 × 106. The performance of the PIPOMP algorithm is much higher
than the OMP.

5. Conclusion

In this paper, we focus on the problem of continuous wave trans-
mission process interfered by pump noise in complex channel environ-
ments, and we propose an improved compressive sensing reconstruc-
tion algorithm. First, we obtain the observation vectors by CP doing
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Table 1
Complexity analysis of different algorithms.

Algorithm Complexity

OMP 𝑂(𝐾 × (𝑀 ×𝑁 +𝑀 ×𝐾2))
CoSaMP 𝑂(𝐾 log𝑁 × (𝑀 ×𝑁 +𝑀 ×𝐾2))
SP 𝑂(𝑁3)
GBRAMP 𝑂(𝐾 × (𝑀 ×𝑁 +𝑀 ×𝐾2))
SAOSP 𝑂(𝐾 × (𝑀 ×𝑁3 +𝑀 ×𝐾2))
PIPOMP 𝑂(𝐾 × (2 ×𝑀 ×𝑁 +𝑀 ×𝐾2))

the difference, and the observation vectors obtained by this method
are more strongly correlated with the pump noise. Then, the noise
is reconstructed using the PIPOMP algorithm and finally the noise is
removed. Through experimental simulations, we have analyzed the
stable pump noise and unstable pump noise separately. We verified
this in terms of the correlation coefficient after denoising and the
system BER, respectively. The results show that the PIPOMP algorithm
proposed in this paper has obvious advantages in denoising effect and
reduces the system BER. This paper not only helps to solve the technical
problems of deep oil and gas resources exploration and development,
but also has a very wide application prospect. However, due to the more
serious attenuation of underground communication signals, there is still
some room for improvement of the denoising performance under low
SNR conditions, and in-depth research will be carried out later.
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