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Complex Gaussian Ratio-Based Bit Error Probability Calculation
for PAM-FBMC Systems

Qiang Guo , Ying Wang , Jianhong Xiang , and Yu Zhong

Abstract— The interference induced by doubly-selective chan-
nels does not follow a Gaussian distribution, which leads to
an inaccurate prediction for the reliability of Pulse Amplitude
Modulation-based Filter Bank Multi-Carrier (PAM-FBMC) sys-
tems. In this letter, we derive a closed-form expression for the
Bit Error Probability (BEP) based on Complex Gaussian Ratio
(CGR), which accurately predicts the Bit Error Rate (BER) of
the system and provides a basis for system design. Specifically,
we first investigate the distribution properties of the ratio between
the received symbol and the channel coefficients (i.e., CGR) to
derive its joint probability density function. Secondly, based on
the joint probability density of the CGR, we derive its Cumulative
Distribution Function (CDF). Finally, we calculate the marginal
CDF and, in conjunction with the decision boundaries provided
by the PAM constellation, derive the BEP. Simulation results
show that the CGR-based BEP provides a better agreement with
the simulated BER.

Index Terms— PAM-FBMC, bit error probability, complex
Gaussian ratio, bit error rate.

I. INTRODUCTION

FUTURE communications should support techniques such
as immersive smart cities, smart vehicular networks, etc.

The wireless channel for such communication cases is highly
under spread [1]. Filter bank multi-carrier (FBMC) systems
become a possible scheme [2]. FBMC supports asynchronous
access and provides higher robustness to carrier frequency
offset [3]. Moreover, It becomes an important R&D technique
for future wireless systems because of its properties such as
lower out-of-band emission and requiring no strict synchro-
nization [4], [5], [6]. In time-varying multipath propagation
(i.e., time-selective fading and frequency-selective fading),
FBMC reliability is degraded. Thus, accurately predicting the
reliability of FBMC in doubly selective channels becomes a
crucial research area [1], [7], [8].

An important evaluation metric for predicting the reliability
of FBMC in doubly selective channels is Bit Error Probability
(BEP). Rugini and Banelli [9] investigated BEP for OFDM
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systems in frequency selective fading. Wang et al. [10] studied
the performance for OFDM systems in doubly selective fad-
ing. However, these methods cannot be directly applied to
FBMC systems. The reason is that the orthogonality of FBMC
holds only in real domain, which leads to inherent imagi-
nary interference. Moreover, the related theoretical research
on the BEP of FBMC systems is scarce. Nissel et al. [8]
investigated the BEP performance of FBMC-OQAM and
OFDM in doubly selective channels. This research provides
an important contribution to the BEP calculation for FBMC
systems. Particularly, Andrade et al. [7] investigated the BEP
performance of QAM-FBMC in AWGN and Rayleigh fading
channels. However, the implementation of QAM and OQAM
modulation requires more complex algorithms and hardware.
Pulse Amplitude Modulation (PAM) offers advantages such
as low hardware implementation costs and high real-time per-
formance (without involving complex phase modulation) [11].
Russell and Stuber [12] considered the issue of interference.
They assumed that the interference follows a Gaussian dis-
tribution and applied the central limit theorem. However, the
assumption is impractical because interferences are generally
non-Gaussian distributed [8]. The above defects inspire and
motivate us to research the BEP performance of PAM-FBMC.
The novel contributions are summarized below:
• Based on the Complex Gaussian Ratio (CGR), we derive

the BEP expression for the PAM-FBMC system. Accord-
ing to the property of PAM symbol set presenting a
uniform distribution, we obtain the optimal decision
boundary. Then, combining the decision boundary with
the distributional properties of CGR, we complete the
accurate calculation of BEP.

• We derive the Cumulative Distribution Function (CDF) of
the CGR. According to the Gaussian distribution property
of CGR, we derive its probability density function and
obtain the CDF. Then, we calculate biaxial (i.e., real-
axis and imaginary-axis) marginal CDFs to improve the
fitness of the decision boundary, and thus improve the
BEP computational accuracy.

• We adopt the 3GPP 38.900 channel model to verify the
validity of our derivation. Compared to the Gaussian
approximation, our derivation better matches the simu-
lated BER perfectly (i.e., the error is less than 10−7).

Notations: ⊗ denotes the Kronecker product. (·)∗, (·)−1,
(·)T and (·)H denote the complex conjugation, inverse, trans-
position, and conjugate transposition, respectively.

II. SYSTEM MODEL

In FBMC, the transmitted signal comprises a set of inter-
leaved PAM symbols, with symbol spacing shorter than
their duration. We replace one QAM symbol by transmitting
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Fig. 1. Block diagram for the transmission structure of the system.

two interleaved PAM symbols, which ensures the spectral
efficiency of the system. Meanwhile, to guarantee proper
orthogonality (real orthogonality) among symbols, we need to
introduce a phase shift factor between each symbol. Assuming
the transmitted signal s (t) is composed of L subcarriers and
K time symbols, it can be expressed as

s (t) =
L∑

l=1

K∑
k=1

xl,k p (t− kT ) ej2πlF (t−kT )ejπ(l+k)/2︸ ︷︷ ︸
gl,k(t)

. (1)

where xl,k denotes the transmitted symbol at time-frequency
position (l, k), selected from the PAM symbol alphabet χ.
F denotes the frequency spacing and T the time spacing.
p (t) denotes the prototype filter and ejπ(l+k)/2 the phase shift
factor. gl,k (t) denotes the base pulse. The received signal r (t)
can be characterized by convolving s (t) with the time-varying
multipath channel, denoted by

r (t) =
∫

R
s (τ)h (t, τ) dτ + n (t)

st. h (t, τ) = 1√
P

∑P

p=1
ηp (t) ej(fDp+φp)δτ−τn

.

(2)

where P denotes the number of paths and ηp (t) the atten-
uation factor of the p-th path. fDp and φp denote the
Doppler shift and initial phase, respectively. δ denotes the
Kronecker delta function. n (t) denotes white noise. Adopting
matched filtering, we can determine the received symbol yl,k

at time-frequency position (l, k), denoted as

yl,k =
∫

R
r (t) g∗l,k (t) dt. (3)

For the k-th symbol, the transmission structure of the system
is shown in Fig. 1. The condition of real orthogonality deter-
mined by the phase shift factor can be expressed as

ℜ
{∫

R
gl,k (t) g∗l′,k′ (t) dt

}
= δ∆l,∆k. (4)

where ∆l = l − l′ and ∆k = k − k′. However, real orthog-
onality leads to imaginary interference. For precise analysis,
we define the interference term as

ζl′,k′

l,k =
∫

R
gl,k (t) g∗l′,k′ (t) dt. (5)

Note that if (l, k) = (l′, k′), then ζl′,k′

l,k = 1; if (l, k) ̸=
(l′, k′), then ζl′,k′

l,k is purely imaginary. Due to the high under

Fig. 2. Decision boundaries for PAM alphabet symbol χj . When offset of
χj exceeds the upper bound ZU

r or the lower bound ZL
r , the judgment of the

other symbols is impacted. Note that the arrow pointing to 0 indicates that
the horizontal decision boundary tends to 0.

spreading in wireless channels [1], received symbols can be
effectively characterized by one-tap channels. Thus, Eq. (3)
can be rewritten as

yl,k = Hl,kxl,k +
∑
l ̸=l′

∑
k ̸=k′

Hl′,k′xl′,k′ζl′,k′

l,k + nl,k. (6)

where Hl,k denotes the one-tap channel at time-frequency
position (l, k), and nl,k =

∫
R n(t)g∗l,k (t) dt the noise term.

To simplify Eq. (6), we consider the system description in
matrix form. We adopt the rate fs to sample the base pulse at
N points and express the samples by the vector gl,k ∈ CN×1.
Then, all the vectors are integrated into the transfer matrix
G = [g1,1, · · ·gL,K ] ∈ CN×LK . The global system model
can be expressed as [13]

y = GHHGx + n. (7)

where x = [x1,1, · · · , xL,K ]T ∈ CLK×1 denotes the transmit-
ted symbol and y = [y1,1, · · · , yL,K ]T ∈ CLK×1 the received
symbol. n ∼ CN (0, PnGH) denotes the complex Gaussian
noise with power Pn, and H ∈ CN×N the channel convolution
matrix [13]. And Hl,k in Eq. (6) is calculated as

Hl,k =
N∑

n=1

[(
gH

l,kH
)
◦ gT

l,k

]
n
. (8)

where ◦ denotes the Hadamard product. Note that the inter-
ference term in Eq. (6) is described as off-diagonal elements
of GHHG.

III. BIT ERROR PROBABILITY

For real-valued PAM, the constellation points are only
twisted or shifted on the real axis in one dimension. Thus,
The PAM constellation requires only vertical decision bound-
aries, not horizontal ones, see Fig.2. The PAM symbol set is
uniformly distributed, enabling us to evenly divide the range
of allowable offsets for accurate symbol detection. Therefore,
we present the method for calculating BEP for PAM-FBMC.

Conditioned on the transmitted symbol x, the received
symbol y (i.e., yl,k) at any time-frequency position satisfies a
Gaussian distribution [8]. We assume that the channel coeffi-
cient H (i.e., Hl,k) satisfies a complex Gaussian distribution,
which is reasonable in multipath transmission [14]. Thus, y
and H have joint density [15], expressed as

fy,H (y,H) =
1

π2 |E|
exp

(
−
[
y
H

]H

E−1

[
y
H

])
. (9)

where

E =
[

E {y∗y} E {y∗H}
E {yH∗} E {H∗H}

]
=
[

σ2
y ρσyσH

ρ∗σyσH σ2
H

]
.

(10)
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The theory for complex Gaussian variables can be referred
to [15]. Note that ρ = ρr + jρi is complex-valued, and
the complex Gaussian ratio Z = y/H = Zr + jZi has the
probability density function, denoted as

fy/H (Zr,Zi) =
1− ρ2

πσ2
yσ

2
H

(
Z2

σ2
y

+
1
σ2

H

− 2
ρrZr − ρiZi

σyσH

)−2

.

(11)

See appendix for proof. Typically, to assess the fading channel,
we require deriving the BEP of AWGN and then integrating
the channel density function [16]. Therefore, adopting the
joint density helps to calculate the BEP for doubly selective
channels. The integral of Eq. (11) reads

G (Zr,Zi) =
∫∫

fy/H (Zr,Zi) dZrdZi

= Π(Zr,Zi, ρr, ρi) + Π (Zi,Zr,−ρi,−ρr) . (12)

where

Π (Zr,Zi, ρr, ρi)

=
ρiσy + σHZi

2π
√
ψ (Zi, ρr, ρi)

tan−1

(
σHZr − ρrσy√
ψ (Zi, ρr, ρi)

)
, (13)

Π (Zi,Zr,−ρi,−ρr)

=
−ρrσy + σHZr

2π
√
ψ (Zr,−ρi,−ρr)

tan−1

(
σHZi + ρiσy√
ψ (Zr,−ρi,−ρr)

)
,

(14)

with

ψ (Zi, ρr, ρi) =
(
1− ρ2

r

)
σ2

y + 2ρiσyσHZi + σ2
HZ2

i ,

(15)

ψ (Zr,−ρi,−ρr) =
(
1− ρ2

i

)
σ2

y − 2ρrσyσHZr + σ2
HZ2

r .

(16)

According to Eqs. (12)-(16), the CDF of the complex Gaussian
ratio Z can be expressed as

Fy/H (Zr,Zi) = G (Zr,Zi) +
1
4

(
σHZi + ρiσy√
ψ (Zi, ρr, ρi)

+
σHZr − ρrσy√
ψ (Zr,−ρi,−ρr)

+ 1

)
. (17)

Generally, we only need to calculate the real-axis marginal
CDF [1], [8], which corresponds to the probability that the real
part of Z is less than the decision threshold ZR. According
to Eq. (17), we can calculate Pr (ℜ{Z} < ZR) as

Pr (ℜ{Z} < ZR) = lim
ZI→∞

Fy/H (ZR,ZI)

=
1
2

+
σHZR − ρRσy

2
√
ψ (ZR,−ρI,−ρR)

. (18)

For a given symbol alphabet χ, we consider the probability
that the receiver detects x̂l,k = χj given that the transmitted
symbol is xl,k = χi. The probability Pr (x̂ = χj |x = χi ) can
be calculated as

Pr (x̂ = χj |x = χi )

= Fy/H

(
ZU

r ,+∞|χi

)
+ Fy/H

(
ZL

r ,−∞|χi

)
−Fy/H

(
ZL

r ,+∞|χi

)
−Fy/H

(
ZU

r ,−∞|χi

)
.

(19)

The upper limit ZU
r and lower limit ZL

r of the real part
decision threshold are denoted as

ZU
r = max

χj

(ℜ{χ} |x = χi ) . (20)

ZL
r = min

χj

(ℜ{χ} |x = χi ) . (21)

Currently, we are unable to calculate the BEP. The reason is
that Eq. (19) still relies on the expectation value in Eq. (10).
Conditioned on x ∈ CLK×1, we can calculate the required
expectation as

E
{
y∗l,kyl,k |x

}
=
∣∣xT GT RG∗x∗

∣∣+ Pn

E
{
yl,kH

∗
l,k |x

}
= xT GT Rg∗l,k. (22)

where R = (IN ⊗ gl,k)HRH (IN ⊗ gl,k) ∈ CLK×LK with
RH = E

{
vec {H} vec{H}H

}
denotes the channel correla-

tion matrix. E {H∗H} is independent of the data and noise,
therefore, allowing us to calculate it as

E
{
H∗

l,kHl,k

}
=
∣∣(gT

l,k ⊗ gH
l,k

)
RH

(
g∗l,k ⊗ gl.k

)∣∣ . (23)

Note that the parameters required for the computation in Eq.
(18) can all be obtained through the ratio in Eqs. (22)-(23).
And, Conditioned on the transmitted symbol x, the expectation
value we calculate can fully consider the channel-induced
interference. Therefore, our scheme can more accurately pre-
dict the system reliability. Now, adopting Eq. (19), we can
calculate the BEP, expressed as

BEPl,k

=
1

log2 |χ|

log2|χ|∑
ℓ=1

1
|χ|

|χ|∑
i=1

∑
χj∈χ̄ℓ

i

Pr (x̂l,k = χj |xl,k = χi ).

(24)

where, the set χ̄ℓ
i represents all elements different from χi at

bit position ℓ. When the amount of data is large, Eq. (22) and
Eq. (23) are computationally intensive. Specifically, the com-
putational complexity for Eqs. (22) and (23) are O

(
NL3K3

)
and O

(
N4
)
, respectively. However, only symbols (about 4-8

[13]) close to xl,k have a significant impact on its BEP.
Therefore, we can reduce the number of symbols considered
to decrease the complexity.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed BEP
expression. We consider BEP performance in flat fading and
time-varying multipath transmission. The simulated BER and
the Gaussian interference approximation of the BEP [12] are
considered for comparison. To evaluate the performance of
PAM-FBMC in frequency-selective Rayleigh fading channels,
several researchers have considered the “Extended Pedestrian
A” and “Extended Vehicular A” channel models provided by
3GPP [5], [17]. Without loss of generality, we employ the
channel models “Pedestrian A” and “Vehicular A” of 3GPP
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TABLE I
MONTE CARLO SIMULATION PARAMETERS

Fig. 3. BEP versus SNR in the case of flat fading. BEP performance is not
related to the multicarrier scheme but to the modulation order. When SNR is
less than 20 dB, the flat fading BEP can describe the doubly selective channel
(see Fig. 4).

38.800 [18]. Firstly, we adopt the “Pedestrian A” channel
model to simulate a flat channel with Root Mean Square
(RMS) delay spread of 46 ns. Secondly, we adopt the “Vehic-
ular A” channel model to approximate the doubly selective
channel and set the RMS delay spread to 370 ns. Additionally,
we consider the BEP at different velocities, which corresponds
to the case of different latency spreads. Finally, for the
PAM-FBMC system, The Monte Carlo simulation parameters
we considered are listed in Table I.

Note that the minimum sampling rate for the system shall be
fs = 2FL. For the “Pedestrian A” channel model, we assign
the number of Wide-sense Stationary Uncorrelated Scattering
(WSSUS) paths to 50 and the velocity to 5km/h. Fig. 3 shows
the relationship between BEP and SNR for the flat fading
case. In high SNR case, BEP shows linear behavior. In flat
channel H = h̄IN , FBMC experiences imaginary interference
that does not impact BEP [8]. And the required expectations
are E {y∗l.kyl,k |x} = |xl,k|2+Pn, E

{
yl,kH

∗
l,k |x

}
= xl,k and

E
{
H∗

l,kHl,k

}
= 1, respectively. Thus, combining Eq. (18),

we can provide an approximate result for Eq. (24) (in terms
of 2-PAM). expressed as

BEP2−PAM
l,k ≈ 1

2
− 1

2
√

2
(
1 + Pnϵ

E{|xl,k|2}

)
− 1

. (25)

where ϵ is a scalar value, usually 1. Note that the approximate
result for Eq. (25) no longer applies to the doubly selective
channel. Instead, it strictly relies on Eq. (24). In practical
scenarios, the SNR is less than 20dB [8]. The BEP in the case
of flat fading provides a valuable reference for doubly selective
channels. For the “Vehicular A” channel model, we assign
the number of WSSUS paths to 200 and the velocity to
200km/h. At this point, the coherence time and bandwidth of
the channel are 0.82ms and 1.5MHz, respectively. Fig. 4 shows

Fig. 4. BEP versus SNR in the case of doubly selective fading. When noise
dominates, a flat-fading BEP can accurately describe the system performance.

Fig. 5. BEP versus velocity in the noiseless case. In high-mobility
environments, the interference is mainly dominated by the Doppler spread,
and thus the Gaussian approximation has a large error (about 1%-5%).

the relationship between BEP and SNR for the doubly selective
fading case. The noise follows a Gaussian distribution, but the
interference does not. Thus, the Gaussian approximation has
the same performance as the CGR-based BEP when noise is
dominant (i.e., SNR is less than 20 dB). However, the Gaussian
approximation is biased when interference dominates. At this
point, the CGR-based calculation method can more accurately
describe the system’s BEP.

Now, we consider a system with only interference (i.e.,
SNR → ∞) and examine the relationship between BEP and
velocity. Fig. 5 shows the BEP versus velocity for the noiseless
case. For low mobility, frequency selective fading due to
multipath transmission causes interference. This interference
can be eliminated by reducing the bit rate. However, lowering
the bit rate will lead to some deviation of the simulated BER
from the CGR-based BEP (about 0.05%-1%). Compared to
the Gaussian approximation, our scheme is more accurate.
However, in highly frequency-selective fading channels, the
CGR-based scheme exhibits prediction errors due to ran-
dom fluctuations. In this case, our scheme may not perform
optimally. Note that when the Mean Square Error (i.e., the
error between the simulated and the analytical values) is
within (−15.27, −8.72) dB, the credibility of our scheme is
95%. In contrast, the Gaussian approximation has only 80%
credibility. Credibility means the probability that the error
value belongs to the confidence interval (−15.27, −8.72) dB.

V. CONCLUSION

In this letter, we derived the BEP expression for the
PAM-FBMC system. This method is implemented based on
CGR. For high SNR (above 20 dB), our scheme is more accu-
rate than Gaussian approximation and closer to the simulated
values. Also, at low SNR (below 20 dB), our scheme also
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accurately describes the BER of the system. The aim of the
proposed method is to predict the BER of the PAM-FBMC
system. The CGR-based approach is not only applicable to flat
channels, but also helps to analyze the impact of time-varying
multipath propagation. This provides an important basis for
evaluating the reliability for the PAM-FBMC system. How-
ever, a more complex multi-antenna system has not been
studied yet, and we plan to explore this in future work.

APPENDIX
CALCULATION OF THE PROBABILITY DENSITY FUNCTION

FOR THE COMPLEX GAUSSIAN RATIO Z = y/H

The correlated binary complex Gaussian variables in Eq. (9)
can be written as y = yr + jyi and H = Hr + jHi, respec-
tively [15]. When the binary complex Gaussian variables are
zero-mean, the probability density function can be written as

fy,H (yr, yi, Hr, Hi)

=
1

π2σyσH (1− ρ2)
exp

(
−1

1− ρ2
×
(
y2
r + y2

i

σ2
y

+
H2

r +H2
i

σ2
H

− 2ρ
σyσH

(yiHi + yrHr)
))

. (26)

And the probability density function of Z = y/H can be
calculated as

fy/H (Z) =
∫ ∫ ∫ ∫

R
fy,H (yr, yi, Hr, Hi)

× δ

(
yr + jyi
Hr + jHi

−Z
)

dyrdyidHrdHi.

(27)

where δ (·) denotes the complex delta function. Adopting
variables substitutions y = uv and H = v [20], we can
simplify the probability density function of the complex
Gaussian ratio. The substitution rules for complex values are
y = (urvr − uivi)+j (urvi + uivr) and H = vr+jvi. Thereby,
the Jacobian determinant is v2

i + v2
r . Thus, the CDF of Z can

be defined as

Fy/H (Z)=

Zr∫
−∞

Zi∫
−∞

∞∫
−∞

∞∫
−∞

(
v2
i +v2

r

)
fy,H (urvr − uivi, urvi

+ uivr, vr, vi) dvrdviduidur. (28)

Thereby, fy/H (Zr,Zi) can be calculated as

fy/H (Zr,Zi) =
∂2

∂ur∂ui
Fy/H (Zr,Zi)

=

∞∫
−∞

∞∫
−∞

(
v2
i + v2

r

)
fy,H (Zrvr −Zivi,Zrvi

+ Zivr, vr, vi) dvrdvi. (29)

Combining Eq. (26) and Eq. (29), we transform the variables
to polar coordinates to calculate the integral which yield
Eq. (11).
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