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ABSTRACT
Millimeter-wave (mmWave) and massive Multiple Input Multiple
Output (MIMO) technologies rely heavily on accurate channel state
information (CSI) to significantly increase system capacity. How-
ever, the large size of the antenna array makes it more difficult to
obtain accurate channel state information. We propose to utilize
beam domain channels to improve the channel estimation accuracy.
Specifically, we first construct the angular domain compensation.
By utilizing this angular domain compensation, we further propose
an angular domain compensated alternating direction multiplier
method (ADC-ADMM) algorithm. The scheme models the channel
estimation problem as a bi-objective convex optimization prob-
lem with joint angular domain compensation, which can capture
channel state information more comprehensively. In addition, the
angular domain compensation can provide a priori information
and improve the robustness in noisy environments. The simulation
results confirm the feasibility of the proposed ADC-ADMM scheme.
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1 INTRODUCTION
In recent years, with the rapid development of the mobile Inter-
net and the Internet of Things (IoT), the number of smart devices
accessing the network has increased dramatically. The Fifth Gener-
ation (5G) mobile communication system came into being, aiming
at triggering the following significant change in the field of mo-
bile communications [1–3]. The short wavelengths of mmWave
support Massive Multiple Input Multiple Output (Massive MIMO)
technology, which compensates for severe path loss, thereby im-
proving overall network throughput and performance [4]. The base
station side of a millimeter wave deployment needs to utilize accu-
rate channel state information (CSI) to design the transmit beam.
The acquisition of accurate CSI is crucial for the base station side.
However, the dimension of the channel matrix in millimeter-wave
scenarios increases dramatically, and it is difficult for traditional
algorithms to obtain accurate CSI [5].

The mmWave channel estimation problem in [6, 7] is treated
as a compressed sensing (CS) problem and the orthogonal match-
ing pursuit (OMP) algorithm is used to recover the sparse signal.
However, the limitations of the beam codebook design lead to large
errors in the estimation results. Also exploiting channel sparsity
for channel estimation is the vector approximate message pass-
ing (VAMP) method proposed in [8]. Literature [9] is based on
the CS theory being modeled as a low-rank matrix approximation
problem and solving for the channel information to be estimated
via semi-positive definite programming. This method outperforms
traditional least squares (LS) channel estimation schemes. How-
ever, both types of algorithms require a large number of training
sequences to obtain a more satisfactory performance. The sparse
mask detection (SMD) based channel estimation method in [10]
reduces the dimensionality of the beamspace channel by selecting
the primary beam. Then, classical algorithms such as LS are utilized
to estimate the dimensionality-reduced channel. However, the SMD
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has a high guide frequency overhead. An alternating direction mul-
tiplier method (ADMM) based millimeter wave channel estimation
scheme is proposed in [11] by combining channel sparsity and low
rank. However, the lack of array gain results in poor performance
at low signal-to-noise ratios (SNR).

To reduce noise interference, we propose a channel estimation
scheme based on the angular domain compensation by utilizing
the a priori information the channel matrix provides in the beam
domain. The main contributions of the paper can be summarized
as follows:

• We propose a bi-objective convex optimization problemmod-
eling channel based on angular domain compensation. This
scheme combines low rank and sparsity to capture the char-
acteristics of the channel more comprehensively. The bi-
objective convex optimization problem formulation intro-
duces angular domain compensation, which utilizes sieve-
ability to reject redundant signals in the channel matrix in
the beam domain. The angular domain compensation helps
to improve the estimation accuracy of the path direction.

• We propose a channel estimation scheme based on the an-
gular domain compensated alternating direction multiplier
method (ADC-ADMM) algorithm. When ADC-ADMM is
coordinated using Lagrange multipliers, we accelerate the
convergence step of ADMM by attaching a relaxation pa-
rameter to approximate the optimal solution faster.

The paper is organized as follows. Narrowband millimeter wave
systems and channel models are introduced in Section 2. In Section
3, the ADC-ADMM-based channel estimation scheme is presented.
To illustrate the performance of the proposed method, simulation
results are shown in Section 4, and the simulation results demon-
strate the effectiveness of the proposed method. The conclusion is
given in Section 5.

Notation: The boldface lowercase and the boldface uppercase
denote the vector and matrix, respectively. ∥ � ∥𝐹 is the Frobenius
norm. (�)𝑇 and (�)𝐻 denote the transpose and conjugate transpose,
respectively. Operands ◦ and ⊗ denote the matrix Hadamard and
Kronecker products, respectively. is the expectation operator. E{�}
denotes the diagonal operator.𝑑𝑖𝑎𝑔(�)denotes the diagonal operator.
I𝑁 is 𝑁 × 𝑁 identity matrix.

2 UPLINK IN SU-MIMO
Consider a point-to-point uplink narrowband millimeter wave sys-
tem [12]. The mobile station (MS) is configured with a 𝑁𝑇 -root
antenna and the base station (BS) is configured with an 𝑁𝑅-root
antenna. Assuming that for the first 𝑇 (0 ≤ 𝑇 ≤ 𝑁𝑅𝑁𝑇 ) moments
of the frame, each moment sends only one unit-power lead symbol
𝑠 [𝑡] ∈ C(0 ≤ 𝑡 ≤ 𝑇 ). 𝑠 [𝑡] is processed by the transmitter precod-
ing vector f ∈ {0, 1}𝑁𝑇 ×1 and passed through the frequency-flat
channel model H ∈ C𝑁𝑅×𝑁𝑇 . The BS applies the hybrid combiner
w ∈ {0, 1}𝑁𝑅×1 to the received signal, then the processed received
signal is 𝑦 (𝑡) Δ

=
√
𝑃𝑡𝒘𝑇𝑯𝒇𝑠 [𝑡] + 𝑛[𝑡]. Where 𝑃𝑡 is the transmitter

power, 𝑛[𝑡] is the complex additive white Gaussian noise (AWGN)
with zero mean and variance 𝜎2𝑛 .

We consider the Saleh-Valenzuela mmWavemassiveMIMO chan-
nel model in [13]. The frequency domain channel H can be modeled

as:

H Δ
=

𝑁𝑃∑︁
𝑘=1

𝛼𝑘a𝑅 (𝜙 (𝑘 )
𝑅

)a𝐻𝑇 (𝜃 (𝑘 )
𝑇

) (1)

where 𝑁𝑃 the number of effective propagation paths of the chan-
nel, and 𝛼𝑘 ∈ 𝐶𝑁 (0, 1/2) is the gain of the 𝑘-th path in the com-
plex Gaussian distribution. a𝑅 (𝜙 (𝑘 )

𝑅
) ∈ C𝑁𝑇 and a𝑇 (𝜃 (𝑘 )𝑇

) ∈ C𝑁𝑅

denote the array response vectors corresponding to the angle of
departure (AOD) and angle of arrival (AOA) of the 𝑘-th path at the
BS and MS, respectively. For the convenience of channel estimation,
the frequency domain channel H is equivalently represented in [14]
as a sparse matrix S containing a small number of sparse matrices
with high amplitude channel gains:

H = D𝑅SD𝐻
𝑇 (2)

Where S ∈ C𝑁𝑅×𝑁𝑇 is the beam domain channel. D𝑅 ∈ C𝑁𝑅×𝑁𝑅

and D𝑇 ∈ C𝑁𝑇 ×𝑁𝑇 are unitary matrices based on the normalized
discrete Fourier transform (DFT) with D𝐻

𝑅
D𝑅 = I𝑁𝑅

and D𝐻
𝑇

D𝑇 =

I𝑁𝑇
.

3 CHANNEL ESTIMATION SCHEME
3.1 Problem formulation
Based on the matrix completeness theory with auxiliary channels
[15, 16], the measurement model Eq. (1) can be re-modeled as a
low-rank matrix sampling process.

min
H,S

𝜏𝐻 ∥H∥∗𝑠 .𝑡 .Ω ◦ H = HΩ (3)

Where 𝜏𝐻 > 0 is weighting factor. ∥H∥∗ is the kernel norm of the
channel matrix H. Ω ∈ {0, 1}𝑁𝑅×𝑁𝑇 denotes the total activated
antenna matrix with 𝑀 (0 ≤ 𝑀 ≤ 𝑁𝑅𝑁𝑇 ) non-zero terms. HΩ

represents the subsampling estimation channel matrix.
The unknown CSI matrix H is recovered in [17] by uniting the

sparse channel matrices S. However, the spatial Fourier transform
introduces a discretization error E(letY = H,E Δ

= Y − D𝑅SD𝐻
𝑇
).

The error accumulates in the iterations and affects the accuracy
of the channel estimation. In particular, we introduce an angular
domain compensation P𝐸 based on the discretization error in the
iterative process. The bi-objective convex optimization problem is
reformulated by acting the angular domain compensation on S:

min
H,S

𝜏𝐻 ∥H∥∗ + 𝜏𝑆 ∥P𝐸 ◦ S∥1
𝑠 .𝑡 .H = D𝑅SD𝐻

𝑇
𝑎𝑛𝑑Ω ◦ H = HΩ

(4)

Where 𝜏𝑆 > 0 are weighting factors. The 𝑙1-parametrization of S
its sparsity. By acting the angular domain compensation P𝐸 on
S, the redundant signals in S can be eliminated and the path di-
rection estimation accuracy can be improved. The P𝑙

𝐸
= Ξ(S𝑙 , 𝛿𝑙 )

operation compares the elements of S𝑙 and threshold 𝛿𝑙 . The po-
sition of an element greater than E is judged as a reliable path.
The position of the reliable path is set adaptively based on the
discretization error at each iteration, with 1 at the element cor-
responding to the receive or transmit angle of its reliable path,
and 0 elsewhere. where 𝑙 represents the number of iterations,
𝑒𝑙max = max{𝑒𝑙11, · · · , 𝑒

𝑙
𝑖 𝑗
, · · · , 𝑒𝑙

𝑁𝑅𝑁𝑇
|𝑒𝑙
𝑖 𝑗

∈ E𝑙 } denotes the largest
element of E at 𝑙 iterations. Set the threshold 𝛿𝑙 according to the 𝑒𝑙max
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(a) Beam domain channel S (b) Common estimation S1 (c) Estimation S2 of the proposed program

Figure 1: Validation of the validity of the angular domain compensation. (a) represents the mean-squared coefficient magnitude
in real beam domain channel, i.e.,

√︃∑ | [S]𝑖, 𝑗 |2([S]𝑖, 𝑗 denotes the (𝑖, 𝑗)-th entry of the matrix S). (b) represents the channel
estimation with common optimization problems. (c) denotes the channel estimation of the optimization problem combining
the angular domain compensation.

of E𝑙 . It is interesting to note that the reliable path location informa-
tion in P𝐸 is not constant and is selected adaptively based on the
discretization error within the system at each iteration. Therefore,
the adaptability to different training sequences can theoretically be
improved. Figure 1 verifies the effectiveness of the introduction of
the angular domain compensation.

3.2 Solution scheme
We use alternating iterations to efficiently find the globally op-
timal solution to the optimization problem described in Eq. (4).
Considering the discretization error E and AWGN, the augmented
Lagrangian function of Eq. (4) at this point is

L(H,Y, S, E,Z1,Z2)
Δ
= 𝜏𝐻 ∥H∥∗ + 𝜏𝑆 ∥P𝐸 ◦ S∥1

+ 1
2 ∥E∥2

𝐹
+ 1

2 ∥Ω ◦ Y − HΩ ∥2𝐹 + 𝑡𝑟 (Z𝐻
1 (H − Y))

+ 𝜌
2 ∥H − Y∥2

𝐹
+ 𝑡𝑟 (Z𝐻

2 (E − Y + D𝑅SD𝐻
𝑇
))

+ 𝜌
2


E − Y + D𝑅SD𝐻

𝑇



2
𝐹

(5)

where Z1,Z2 ∈ C𝑁𝑅×𝑁𝑇 are lag range multipliers, and 𝜌denotes
the step size of the alternating direction method of multipliers
(ADMM). According to the standard ADMM, the following separate
subproblems need to be solved when the 𝑙-th(𝑙 = 0, 1, . . .) iteration
of the algorithm is required.

The first subproblem considers the optimization of the variable
H, so only the term related to H in Eq. (5) is retained, which can be
equivalently formulated as

H𝑙+1 = argmin
H

𝜏𝐻 ∥H∥∗ +
𝜌

2





H − (Y(𝑙 ) − 1
𝜌

Z(𝑙 )
1 )





2
𝐹

(6)

According to matrix completion theory [18], Eq. (6) can be rewrit-
ten by the singular value threshold (SVT) operator as

H(𝑙+1) = U𝑑𝑖𝑎𝑔({𝑠𝑖𝑔𝑛(𝜁𝑖 )max(𝜁𝑖 , 0)}1≤𝑖≤𝑟 )V𝐻 (7)

where U ∈ C𝑁𝑅×𝑟 and V ∈ C𝑁𝑇 ×𝑟 are the left and right singular
vector matrices of the matrix Y(𝑙 ) − 1

𝜌 Z(𝑙 )
1 , 𝜎𝑖 denotes the 𝑖-st of

the 𝑟 singular values, and 𝜉𝑖 = 𝜎𝑖 − 𝜏/𝜌 .

The second subproblem: The derivative of Eq. (5) with respect
to Yyields:
𝜕L
𝜕Y

= Ω ◦ Y − HΩ − Z(𝑙 )
1 − 𝜌 (H(𝑙+1) − Y) − Z(𝑙 )

2 − 𝜌 (E(𝑙 ) − Y + D𝑅SD𝐻
𝑇 ) (8)

If we let Eq. (9) be zero, it is equivalent to solving the following
system of equations:

𝑦 (𝑙+1) = (𝑴1 + 2𝜌𝑰 )−1
(
𝒉Ω + 𝒛 (𝑙 )

1 + 𝜌𝒉 (𝑙+1) + 𝒛 (𝑙 )
2 + 𝜌𝒆 (𝑙 ) + 𝜌𝑴2𝒔

(𝑙 )
)

(9)

whereM1
Δ
=

𝑁𝑅∑
𝑖=1

𝑑𝑖𝑎𝑔( [Ω]𝑖 )𝑇 ⊗ E𝑖𝑖 ∈ C𝑁𝑅𝑁𝑇 ×𝑁𝑅𝑁𝑇 ,[Ω]𝑖 denotes

the 𝑖-th row of Ω, and E𝑖𝑖 ∈ C𝑁𝑅×𝑁𝑅 denotes the insertion of a unit
value in the (𝑖, 𝑖)-th term of the all-zero matrix, M2 = D𝑇 ⊗ D𝑅 .

The third subproblem involves the solution of the angular do-
main compensation P𝐸 and the variablesS𝑙+1. The subproblem can
be equated as

S𝑙+1 = argmin
S

𝜏𝑆 ∥P𝐸 ◦ S∥1 +
𝜌

2





( 1𝜌 Z(𝑙 )
2 + E(𝑙 ) − Y(𝑙+1) + D𝑅SD𝐻

𝑇 )




2
𝐹

(10)

By vectorization, such thats(𝑙+1) = 𝑣𝑒𝑐 (S(𝑙+1) ), the above equa-
tion is equivalent as

s𝑙+1 Δ
= argmin

𝑆
𝜏𝑆 ∥M3s∥1 +

𝜌

2





 1𝜌 z(𝑙 )1 + e(𝑙 ) − y(𝑙+1) + D𝑅SD𝑇 + M2s




2
𝐹

(11)

whereM3
Δ
=

𝑁𝑅

Σ
𝑖=1

𝑑𝑖𝑎𝑔( [P𝐸 ]𝑖 )𝑇 ⊗ E𝑖𝑖 ∈ C𝑁𝑅𝑁𝑇 ×𝑁𝑅𝑁𝑇 . Considering

Eq. (11) as a standard least absolute shrinkage and selection operator
(LASSO) problem [19], Eq. (10) can be equated as

min
S

𝜏𝑆 ∥M3s∥1 +
𝜌

2





M3M′
2 (

1
𝜌

z(𝑙 )1 + e(𝑙 ) − y(𝑙+1) ) +M3s




2
2

(12)

The soft threshold operator is then applied to the (𝑙 +1)iterations
of Eq. (12) as follows:

𝒔 (𝑙+1) = 𝑠𝑖𝑔𝑛

(
Re(𝒗′ (𝑙+1)

)
) ◦max( |Re(𝒗′ (𝑙+1) ) | − 𝜏 ′𝑆 , 0)

+𝑠𝑖𝑔𝑛
(
𝐼𝑚(𝒗′ (𝑙+1)

)
) ◦max( |𝐼𝑚(𝒗′ (𝑙+1) ) | − 𝜏 ′𝑆 , 0)

(13)

where v′ (𝑙+1) = M3M′2 ( 1𝜌 z(𝑙 )1 + e(𝑙 ) − y(𝑙+1) ) ∈ C𝑁𝑇𝑁𝑅×1,𝜏 ′𝑆
Δ
=

𝜏𝑆/𝜌 .
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The fourth subproblem: The derivative of Eq. (5) concerning
Egives:

𝜕L
𝜕E

= (1 + 𝜌)E − 𝜌 (Y(𝑙+1) − D𝑅S(𝑙+1)D𝐻
𝑇 − 1

𝜌
Z(𝑙 )
2 ) (14)

Let Eq. (14) equal 0 to obtain the solution in closed form as
follows:

E(𝑙+1) =
𝜌

𝜌 + 1





Y(𝑙+1) − D𝑅S(𝑙+1)D𝐻
𝑇 − 1

𝜌
Z(𝑙 )
2





2
𝐹

(15)

The subproblems are coordinated using Lagrange multipliers af-
ter alternately updating the variables to progressively approximate
the optimal solution:

Z𝑙+1
1 = Z(𝑙 )

1 + 𝛽𝜌 (Ω ◦ Y(𝑙+1) − HΩ) (16)

Z𝑙+1
2 = Z(𝑙 )

2 + 𝛽𝜌 (D𝑅S(𝑙+1)D𝐻
𝑇 + E(𝑙+1) − Y(𝑙+1) ) (17)

The introduction of relaxation parameters 𝛽 in Eq. (16) and Eq.
(17) and taking 𝛽 = 1.5[20] increases the step size of the algorithm,
leading to faster convergence, and its solution can be computed
directly using Eq. (9), Eq. (13), and Eq. (15). The proposed ADC-
ADMM-based channel estimation scheme is summarized in Algo-
rithm 1. After a predetermined number of algorithm iterations 𝐼max
, the algorithm finally outputs an estimate H(𝐼max ) of the true MIMO
channel by stepwise updating and circular iterations.

Algorithm 1 Proposed ADC-ADMM-based Channel Estimation
Scheme
Input: HΩ , Ω, D𝑅 , D𝑇 , 𝜌 , 𝜏𝐻 , 𝜏𝑆 , 𝐼𝑚𝑎𝑥 .
Output:H(𝐼max ) .
Initialization:Y(0) = S(0) = E(0) = Z(0)

1 = Z(0)
2 = 0.

1:for 𝑙 = 0, 1, . . . , 𝐼max − 1 do
2:Update H𝑙+1 using Eq. (7),
3:Update Y𝑙+1 using Eq. (9),
4:Update P𝐸 = Ξ(S𝑙 , 𝛿𝑙 ),
5:Update S𝑙+1 using Eq. (12),
6:Update E𝑙+1 using Eq. (15),
7:Update Z𝑙+1

1 and Z𝑙+1
2 using Eq. (16) and Eq. (17).

8:end for

4 SIMULATION RESULTS AND DISCUSSIONS
To verify the performance of the proposed channel estimation
scheme in a mmWave massive MIMO system, the experiments
were set up with a mmWave channel at 90 GHz and a system of
uniform antenna linear arrays (ULAs) with 𝑁𝑇 × 𝑁𝑅 , 𝑁𝑇 = 64,
and𝑁𝑅 = 64 . Set the pilot symbols[𝑡] = 1(1 ≤ 𝑡 ≤ 𝑇 ) and the
transmit power 𝑃𝑡 = 1 for simulation.

Considering SVT [22], OMP [6], VAMP [8], ADMM [11], ADMM-
AI [21] for comparison with the proposed algorithms. Set the max-
imum number of iterations to 𝐼max = 100, and set the sparsity
to 𝑁𝑝 for OMP and VAMP. 𝑁𝑝 denotes the number of effective
propagation paths of the channel. For ADMM, ADMM-AI, and
the proposed scheme, consider 𝜏𝐻 = 𝜌 ∥HΩ ∥𝐹 , where 𝜌 = 0.005,
𝜏𝑆 = 0.1/(1 − 10 log(𝜎2𝑛)), and 𝜎2𝑛 is the noise variance. All the

above tests are implemented by 100 Monte Carlo. The 𝑁𝑀𝑆𝐸 is
defined by the following equation:

𝑁𝑀𝑆𝐸
Δ
= 𝐸

(
10log10

∥ H(𝐼max ) − H ∥2
𝐹

∥ H ∥2
𝐹

)
(18)

where H(𝐼max ) represents the estimation of the true channel H. The
𝐴𝑆𝐸 is defined as follows:

𝐴𝑆𝐸
Δ
= 𝐸

{
log2 det(I𝑁𝑅

+ HH𝐻

𝑁𝑇𝑁𝑅 (𝜎2𝑛 + 𝑁𝑀𝑆𝐸)
)
}

(19)

When the parameters are configured as 𝑁𝑇 = 64, 𝑁𝑅 = 64,
and 𝑁𝑝 = 2, Figure 2 shows the 𝑁𝑀𝑆𝐸 performance of different
algorithms. The OMP is strongly influenced by the AOA discretiza-
tion error. The ADMM and ADMM-AI utilize the matrix-complete
theory, which is free from the beam codebook design limitation.
VAMP is a statistical learning estimator that relies on training data
and cannot recover the channel matrix at small 𝑇 . The proposed
algorithm performs well in channel estimation under the 𝑁𝑀𝑆𝐸

metric. Therefore, an interesting conclusion is that adaptive sieving
of reliable path information in the beam-domain channel matrix
according to the error threshold can provide more reliable path
information for channel matrix recovery.

Figure 3 shows the 𝐴𝑆𝐸 performance of different algorithms
for the parameter configurations 𝑁𝑇 = 64, 𝑁𝑅 = 64 , and 𝑁𝑝 =

2. The 𝐴𝑆𝐸 tends to increase as the 𝑆𝑁𝑅 increases. As shown in
(19), at 𝑇 = 600, the better the 𝑁𝑀𝑆𝐸 performance, the higher
the𝐴𝑆𝐸. It is interesting to note that VAMP does not show better
performance than the proposed algorithm at low 𝑆𝑁𝑅 (𝑆𝑁𝑅 <

10dB) for 𝑇 = 1000 . The results show that the performance of the
proposed algorithm is closest to the perfect CSI under the tested
training symbols.

Figure 4 depicts the 𝑁𝑀𝑆𝐸 performance of each algorithm ver-
sus the number of channel propagation paths 𝑁𝑃 for 𝑁𝑇 = 64,
𝑁𝑅 = 64, 𝑆𝑁𝑅 = 30dB, and 𝑇 = 1000. As 𝑁𝑃 increases, the 𝑁𝑀𝑆𝐸

performance of each algorithm decreases. The 𝑁𝑀𝑆𝐸 performance
of the proposed algorithm outperforms the other algorithms in all
the simulated 𝑁𝑃 ranges. Therefore, an interesting conclusion is
the adaptive sieving property of the proposed algorithm, which can
adjust the threshold value according to different channel conditions,
thus providing a reliable path for channel recovery.

5 CONCLUSION
In this paper, we develop a high-performance jointly optimized
channel estimation scheme in narrowband mmWave Massive
MIMO systems. Specifically, we first constructed the angle com-
pensation matrix and verified the effectiveness of angular domain
compensation. Based on this angular domain compensation, we
then proposed an ADC-ADMM algorithm to improve the accuracy
of channel estimation. Simulation results show that the proposed
ADC-ADMM algorithm has the highest channel estimation accu-
racy compared to existing algorithms. For the future work, we will
improve the complexity problem of the proposed solution scheme
through low-rank optimization.

226



Channel estimation for massive MIMO systems based on adaptive angular domain compensation VSIP 2023, November 24–26, 2023, Harbin, China

(a) T=600 (b) T=1000

Figure 2: Relationship between NMSE and SNR at different T values for NT=64, NR=64, NP=2.

(a) T=600 (b) T=1000

Figure 3: Relationship between 𝐴𝑆𝐸 and 𝑆𝑁𝑅 at different 𝑇 values for 𝑁𝑇 = 64,𝑁𝑅 = 64 ,𝑁𝑝 = 2

Figure 4: Relationship between 𝑁𝑀𝑆𝐸 and 𝑁𝑃 at different 𝑇
values for 𝑁𝑇 = 64,𝑁𝑅 = 64 ,𝑆𝑁𝑅 = 30dB,𝑇 = 1000
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